Weak focus:

Support documentation

Equations of motion in the field index-n are:

$$
\begin{array}{ll}
\frac{d^{2} x}{d s^{2}}+\frac{1}{\rho}(1-n) x=\frac{1}{\rho} \frac{\Delta p}{p} & \begin{array}{l}
\mathrm{B}_{0}=3 \mathrm{~T}, \\
\mathrm{p}=300 \mathrm{MeV} / c \\
\rho=33.3 \mathrm{~cm}
\end{array} \\
\frac{d^{2} y}{d s^{2}}+\frac{1}{\rho^{2}} n y=0 & \rho=33 \\
n=-\frac{\rho}{B_{0}} \frac{\partial B_{y}}{\partial x} & (\Delta \mathrm{p} / \mathrm{p} \text { is momentum error) }
\end{array}
$$

Results of these equation are:

$$
\begin{aligned}
& \left(\begin{array}{c}
x(s) \\
x^{\prime}(s) \\
\frac{\Delta p}{p}(s)
\end{array}\right)=\left(\begin{array}{ccc}
\cos \frac{\sqrt{1-n}}{\rho} s & \frac{\rho}{\sqrt{1-n}} \sin \frac{\sqrt{1-n}}{\rho} s & \frac{\rho}{1-n}\left(1-\cos \frac{\sqrt{1-n}}{\rho} s\right. \\
-\frac{\sqrt{1-n}}{\rho} \sin \frac{\sqrt{1-n}}{\rho} s & \cos \frac{\sqrt{1-n}}{\rho} s & \frac{\rho}{\sqrt{1-n}} \sin \frac{\sqrt{1-n}}{\rho} s \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\rho \\
x_{0} \\
x_{0}^{\prime} \\
\left.\frac{\Delta p}{p}\right|_{0}
\end{array}\right) \\
& \binom{y(s)}{y^{\prime}(s)}=\left(\begin{array}{cc}
\cos \frac{\sqrt{1-n}}{\rho} s & \frac{\rho}{\sqrt{n}} \sin \frac{\sqrt{n}}{\rho} s \\
-\frac{\rho}{\sqrt{n}} \sin \frac{\sqrt{n}}{\rho} s & \cos \frac{\sqrt{1-n}}{\rho} s
\end{array}\right)\binom{y_{0}}{y_{0}^{\prime}}
\end{aligned}
$$

Cont.

One-revolution transfer matrix is:
$M_{H}=\left(\begin{array}{cc}\cos 2 \pi \sqrt{1-n} & \frac{\rho}{\sqrt{1-n}} \sin 2 \pi \sqrt{1-n} \\ -\frac{\sqrt{1-n}}{\rho} \sin 2 \pi \sqrt{1-n} & \cos 2 \pi \sqrt{1-n}\end{array}\right)$
$M_{V}=\left(\begin{array}{cc}\cos 2 \pi n & \frac{\rho}{\sqrt{n}} \sin 2 \pi n \\ -\frac{\sqrt{n}}{\rho} \sin 2 \pi n & \cos 2 \pi n\end{array}\right)$
Matrix at $s=0=2 \pi$ is expressed by using twiss parameters $\alpha(s), \beta(s), \gamma(s)$ and phase advance $\mu(s)$.
$M=\left(\begin{array}{cc}\cos \mu(0)+\alpha(0) \sin \mu(0) & \beta(0) \sin \mu(0) \\ -\gamma(0) \sin \mu(0) & \cos \mu(0)-\alpha(0) \sin \mu(0)\end{array}\right)$

$$
\begin{aligned}
& \mu_{H}(0)=2 \pi \sqrt{1-n}, v_{H}(0)=\frac{\mu_{H}(0)}{2 \pi}=\sqrt{n-1} \\
& \beta_{H}(0)=\frac{\rho}{\sqrt{1-n}}, \alpha_{H}(0)=0, \gamma_{H}(0)=\frac{1+\alpha^{2}}{\beta}=\frac{\sqrt{1-n}}{\rho} \\
& \mu_{V}(0)=2 \pi \sqrt{n}, v_{H}(0)=\frac{\mu_{V}(0)}{2 \pi}=\sqrt{n} \\
& \beta_{V}(0)=\frac{\rho}{\sqrt{n}}, \alpha_{V}(0)=0, \gamma_{\mathrm{V}}(0)=\frac{\sqrt{n}}{\rho}
\end{aligned}
$$

Momentum dispersion is

$$
\eta(s)=\frac{2 \rho}{1-n}, \eta^{\prime}(\mathrm{s})=0
$$

Our case is $\mathrm{n}=5 \mathrm{E}-3$, and then, parameters are:

$$
\begin{aligned}
& v_{H}=\sqrt{1-n} \approx 1, \quad \beta_{H} \approx \rho=33.3 \mathrm{~cm} \\
& v_{v}=\sqrt{n} \sim 5 E-3, \quad \beta_{V} \approx 1.83 \times 10^{2} \rho=61 \mathrm{~m} \\
& \eta \approx 0.66662 \mathrm{~m}
\end{aligned}
$$

Error field estimation (Horizontal)

Due to $n=3 E-5 \cong 0, M_{H}$ is expressed as
$M_{H} \cong\left(\begin{array}{cc}\cos \frac{s}{\rho} & \rho \sin \frac{s}{\rho} \\ -\frac{1}{\rho} \sin \frac{s}{\rho} & \cos \frac{s}{\rho}\end{array}\right)$
Assuming that beam suffers horizontal kick Δx^{\prime} per turn: $\Delta x^{\prime} \equiv \frac{\Delta B l}{B \rho}$
Because of a matrix for an one turn $\approx\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ beam is kicked repeatedly at the same point, but the angle is changed by Δx^{\prime}.

Difference between the $1^{\text {st }}$ and $2^{\text {nd }}$ rot. orbits is maximized at $1 / 4$ and $3 / 4$ rot. points by this kick. And its value is $\rho \Delta x^{\prime}$.

After m rotations, orbits are moved by

$$
x_{m}=\rho m\left(\Delta x^{\prime}\right)
$$

If we request $\mathrm{xm}<5 \mathrm{~mm}$ for $\mathrm{m}=7000$,

$$
\begin{aligned}
\Delta x^{\prime} \equiv \frac{\Delta B l}{B \rho} \leq 2.1 & \times 10^{-6} \\
& \because B \rho=1[T \cdot m]
\end{aligned}
$$

$\Delta B l \leq 2.1 \times 10^{-6}[T . m]$
$\rightarrow 200 \mathrm{mGauss}$ for $\mathrm{I}=10 \mathrm{~cm}$
$\rightarrow 20 \mathrm{mGauss}$ for $\mathrm{I}=1 \mathrm{~cm}$
$20 \mathrm{mGauss} / 3 \mathrm{~T}=0.66 \mathrm{E}-6$
\rightarrow level of 1ppm in local!

Error field estimation (Vertical)

Due to $n=3 E-5 \cong 0, M_{v}$ is expressed as

$$
M_{V} \cong\left(\begin{array}{cc}
1 & s \\
-\frac{n}{\rho^{2}} s & 1
\end{array}\right)
$$

This is an almost free space matrix and beam is kicked repeatedly at the same horizontal (or azimuthally) but slightly different vertical points. Vertical difference between the turns growths linearly (Δy).

Crosssection view

$$
\begin{aligned}
\Delta y & =2 \pi \rho \Delta y^{\prime} \frac{m(m+1)}{2}-(2 \pi)^{3} n \rho \Delta y^{\prime} \frac{(m-2)(m-1)}{2} \\
& \approx 2 \pi \rho \Delta y^{\prime} \frac{m^{2}}{2} \\
& 1 / v_{V}=200
\end{aligned}
$$

$\rightarrow \Delta y^{\prime}$ changes its sign every ~ 100 turns!
If we request $\Delta y<2 c m$ for $m=100$,

$$
\begin{array}{r}
\Delta y^{\prime} \equiv \frac{\Delta B_{R} l}{B \rho}=\frac{\Delta y}{\pi \rho m^{2}} \leq 1.9 \times 10^{-6} \\
\because B \rho=1[\mathrm{~T} \cdot \mathrm{~m}]
\end{array}
$$

$$
\Delta B_{R} l \leq 1.9 \times 10^{-6}[T . m]
$$

\rightarrow 190mGauss for $\mathrm{I}=10 \mathrm{~cm}$ vertically
$\rightarrow 19 \mathrm{mGauss}$ for $\mathrm{I}=1 \mathrm{~cm}$
$19 \mathrm{mGauss} / 3 \mathrm{~T}=0.63 \mathrm{E}-6$
\rightarrow level of 1ppm in local!!

