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Abstract

Three dimensional spiral injection scheme is an one of major R&D items for the

newly planned muon g − 2/EDM experiment at J-PARC. The new experiment

aims factor three better precision of g − 2 and 100 times better sensitivity of

EDM measurements compared to the previous experiments. We take advantage

of 3-T MRI solenoid magnet as the muon storage with 0.66 m diameter, to

achieve 1 ppm level of local uniformity. There is no previous instance to inject

accelerated beam into such a small ring. Conventional injection scheme is not

applicable because of several technical difficulties. New injection scheme solves

these difficulties and provide smooth beam injection utilizing a static solenoidal

fringe field of the storage magnet. The strongest point of this scheme is the

following: it does not cause any error field in the storage volume in principle.

But, there is a challenging issue: the beam requires strong coupling horizontally

and vertically. To accomplish the higher injection effiency, this is an indispens-

able item. In this document, we introduce basic kinetics of spiral motion of the

✩Detail information of the new g − 2/EDM experiment at J-PARC is available in the
homepage on g − 2/EDM.
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beam in the solenoid fringe field, and a required phase-space at the entrance

of the storage magnet (injection point). We discuss Transfer Matrix of beam

transport line which applies proper strong coupling. Stable and precise beam

control at the storage volume connects to the sensitivity of EDM directly. We

introduce a concept and realistic design of the beam storage system: the Weak

focusing and vertical kicker system.

Keywords: new beam injection scheme, g − 2/EDM, J-PARC

1. Introduction

The new experiment of the muon’s anomalous magnetic moment (g−2) and

its electric dipole moment (EDM) is in preparation at J-PARC muon facility at

MLF, MUSE. The principle of the experiment is the same as for the former ex-

periments at CERN and BNL. The differences two angular frequencies between5

the spin precession frequency ωs and the orbital cyclotron precession frequency

ωc is measured in a homogeneous magnetic field and hence (g−2) is determined.

On the other hand, the J-PARC muon g − 2/EDM measurement will use a

very different approach to previous muon g − 2 experiments. Table 1 compares

the proposed experiment with the previous experiment, BNL-E821[1, 2]. Firstly10

we review experimental parameters in previous experiment.

Previous experiments used 3.09 GeV/c muons and a 14 m diameter storage

ring, and used calorimetry to measure the decay positrons. The energy of the

previous experiments was set by a cancellation in the contribution to the spin

precession from from strong electric focusing at this energy.15

For J-PARC, it is proposed to develop a source of ultra-cold muons[3, 4],

which require only weak focusing to maintain in the beam size in a storage

ring. This release the requirement on the muon energy, and a momentum of

300 MeV/c was chosen with a 3 T MRI-type solenoid magnet used to store the

muons. In this case, the diameter of the orbital cyclotron motion becomes only20

0.66 m. The J-PARC experiment will use an order of magnitude lower energy

and twenty times smaller diameter storage ring. We expect to achieve the
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Table 1: Comparison of the previous experiment BNL-E821 (its continuation at Fermilab,

FNAL-E989) and this experiment.Arrows in the right column mean ultimate goal.

BNL-E821 FNAL-E989 This Experiment

Muon momentum 3.09 GeV/c 0.3 GeV/c

γ 29.3 3

Polarization 100% 50%→ 100%

Storage field B = 1.45 T B = 3.0 T

Diameter of the ring 14 m 0.66 m

Focusing field Electric Quad. very-weak magnetic

Cyclotron period 149 ns 7.4 ns

Spin precession period 4.37 µs 2.11 µs

# of detected e+ 5.0×109 1.8×1011 8.7× 1011 → 1.5× 1012

# of detected e− 3.6×109 − −
Statistical precision (aµ) 0.46 ppm 0.14 ppm 0.37 ppm → 0.14 ppm

Statistical precision (EDM) 0.9× 10−19 e · cm 10−21 e · cm 10−21 e · cm

better adjustment accuracy of the magnetic field with the smaller storage ring.

Moreover, fiducial volume to detect decay positron (e+) also compact. This

fiducial volume is also inside of the well adjusted magnetic field. Therefore, we25

can track its trajectory and measure momentum event-by-event. This is the

strongest point of the J-PARC muon g − 2/EDM experiment. Because this

system allow us to measure spin precession as an angular momentum vector. In

case of non-zero electric dipole moment of the muon, as we introduce later, we

can access to both g−2 and EDM signals at a time, with the same experimental30

set-up, by having an appropriate detector design.

Previous experiments reached a sensitivity on muon g − 2 of 0.54 ppm,

with the uncertainty dominated by statistics. The result, with most recent and

sensitive from E821 at BNL, is not described by the Standard Model of particle

physics, with a ∼ 3 sigma deviation, suggesting the need for physics beyond the35

Standard Model. Muon g−2 is a fundamental observable of elementary particle
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and it is valuable to improve upon its measurement and so to perform the

experiment using different approaches. Any comprehensive theory of particle

physics must describe muon g − 2.

We will introduce two angular momentum vectors due to g − 2 and EDM40

bellow. We also give an idea how precisely the muon beam should be controlled

in the storage volume to detect EDM signal in order of 10−21 e·cm, which is 100

times better sensitivity compared to the previous experiment [2].

g − 2 term. For a non-relativistic spin, the Hamiltonian is

H = −~µµ · ~B = − gq

2mµc
~s · ~B, (1)

Here, ~µµ and mµ are magnetic moment and mass of the muon respectively. g

is a gyromagnetic ratio of the muon. c and q are the speed of light and an unit

charge. The spin precession equation becomes

d~s

dt
= ~µµ × ~B = − gq

2mµc
~B × ~s. (2)

and |~ωL| is the Lamor frequency:

~ωL =
gq

2mµc
~B. (3)

Consider the muon moving with relativistic velocity ~V under the action of

laboratory frame electric and magnetic fields: ~B, ~E, respectively. Trajectory of

the muon determined by the Lorentz force equation, with β = ~V /c:

d~p

dt
= q

(

~E + ~β × ~B
)

. (4)

We can rewrite this equation as:

d~β

dt
=

q

mµcγµ

[

~E −
(

~E · ~β
)

~β + ~β × ~B
]

. (5)

The muon moving case, Equation 2 becomes:

d~s

dt
= ~ωs × ~s, (6)

4



here,

~ωs = − q

mµc

[

(

aµ +
1

γµ

)

~B − aµγµ
γµ + 1

(

~β · ~B
)

~β −
(

aµ +
1

γµ + 1

)

~β × ~E

]

. (7)

γµ is Lorentz factor and aµ is

aµ =
g − 2

2
. (8)

Now, we think of the case that there is no electric field ( ~E = 0) and inner

product of ~β and ~B is negligibly small (~β · ~B ≃ 0). Equation 5 and 6 become:45

d~β

dt
= − q

mµcγµ
~B × ~β = ~ωc × ~β (9)

d~s

dt
= − q

mµc

(

aµ +
1

γµ

)

~B × ~s = ~ωs × ~s, (10)

Note that we introduced two angular momentum vectors ωc and ωs. Both

vectors are parallel to the magnetic field ~B. If we take a difference of these

vectors, we have a vector of g − 2.

~ωg−2 = ~ωs − ~ωc = − q

mµcγµ
aµ ~B (11)

In order to measure measure aµ precisely, we need to measure ωg−2 in the

highly precisely adjusted field ~B.

EDM term. In case of non-zero electric dipole moment of the muon (µEDM),

~d = ηµ
q

2mµc
~s, (12)

we have an extra term which should be showed up in spin precession:

~ΩEDM =
ηµ
2

(

~β × ~B
)

. (13)

Therefore, angular velocity of spin precession becomes:

~ω = ~ωg−2 + ~ΩEDM (14)

nonumber = − q

mµ
aµ ~B −+

η

2

(

~β × ~B
)

(15)

We should note that the first term and the second term in Equation 15

are orthogonal each other. Therefore, angular momentum vector ~ω has a tilt50
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angle against the magnetic field ~B in the presence of EDM. This tilt angle is an

order of 1 mrad, if we take the upper limit of η from the previous experiment

E821 [2]. To achieve 100 times better sensitivity, we should be sensitive down

to 0.01 mrad of a tilt angle.

Finally in the introduction section, we would itemize three important points55

to accomplish the new experiment:

•
∣

∣

∣

~E
∣

∣

∣ < 10mV/cm to avoid spin precession from the electric field less than

the order of ppb.

• ~B is precisely adjusted 1 ppm locally and 0.1 ppm in averaged along the

orbit,60

• inner product of ~B and β should be smaller than 10−5 to achieve EDM

sensitivity order of 10−21e·cm.

Detailed discussions including R&D status for the first two items are in [5].

In this document we focus on the third item, especially on newly developed

three dimensional beam injection scheme for the compact ring. In the following65

section, we do not describe spin motion but we concentrate on the muon trajec-

tory and the beam dynamics. As long as adiabatic situation, we should be able

to follow spin direction by use of Equation 10 Detail discussion of this topic is

in [5], and further study is now ongoing.
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2. Muon storage ring magnet and injection70

The muon storage ring for this experiment will be a precession field 3 Tesla

solenoid with cylindrical iron poles and return yoke. The solenoid is being

designed now in collaboration with a private company to a specification of <

1 ppm variation of the field locally within the storage region. The storage region,

which is defined on the mid-plane, has a radius of 33.3 ± 1.5 cm and height75

of ±5 cm, with an applied weak focusing magnetic field to keep vertical

motion of the beam within a few cm (See section 4). An engineering study for

the magnet is discussed in another section. In this section, we introduce three

major topics,

• Basic concept of the muon injection strategy,80

• Beam physics of 3-D spiral injection,

• Acceptance of the beam at the injection point.

There are two related topics as follows, which are discussed in section 3 and 4.

• Beam transport line

• Weak focusing system and Kicker85

2.1. Basic concept of the muon injection strategy

For injection, the muon beam must be injected into the storage ring with

minimum interference to the storage field. In the BNL g − 2 experiment, as

displayed in Figure 1, a device called an inflector [6] was used to inject the

muon beam into the storage region, to avoid deflection by the fringe field. As90

the beam crossed the storage region, the beam was kicked horizontally by the

kicker to move to the central orbit through an angle large enough to prevent

the beam from striking the inflector after one turn. This procedure works only

if the radius of the storage ring is large enough compared to the inflector wall

thickness. The limitation comes from the required kick-angle within the first95

turn in the storage ring (within 149.2 ns for BNL case) to avoid hitting the
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inflector itself. In the BNL g − 2 experiment, the radius of storage ring was

711 cm and the wall thickness was ∼ 1 cm. Therefore the kick angle was

∼ 1.5 mrad.

In our experiment, on the other hand, the radius of the central beam orbit100

is only 33.3 cm. Using a similar inflector as BNL would require a horizontal

kick angle of 30 mrad within the first turn in the ring (within 7.4 ns). This

kick angle would be an order of magnitude larger than a kick using any existing

technology. Therefore, a horizontal kick does not work for our case.

In order to overcome this difficulty, we have chosen a spiral injection105

scheme instead, as displayed in Fig. 2. At the location where we apply a

kick, the beam will be separated from the injecting point by ∼40 cm vertically,

so there would be no disturbance in the incident beam trajectory.

A solenoidal magnet is suitable for this injection scheme as shown in Figure 3.

An unique point of this scheme is to build in a radial fringe field to replace the110

role of the inflector.

The beam momentum is deflected vertically by a radial magnetic field, which

will be built in the solenoid fringe field, which is shown as BR in Fig. 3. The

magnetic field should be carefully shimmed not only for the vertical field for

the muon storage but also for the radial field so that vertical momentum and115

position are well controlled throughout the injection volume.

A pulsed magnetic kicker will be used to guide the spiraling beam into a

stable orbit at the center of the storage region. The duration of the kick can

be for a number of cyclotron (or revolution) periods, since a longer kicker pulse

allows a lower kicker voltage and more stability. A multi-turn-kick by the longer120

pulse shape kicker would be easier.

Finally, the beam is stored into the storage region. In order to control

vertical beam motion to within a few cm vertically, we also apply a weak

focusing magnetic field.

Figure 4 depicts the entire image of solenoid magnet with sample trajectories125

shown. The beam will enter into the magnet through a hole in the return yoke
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Figure 1: Injection scheme for previous experiment (BNL g − 2). They use an inflector and

horizontal kicker system.

Figure 2: Outline of three-dimensional injection scheme. A radial fringe field deflects the

vertical component of the beam momentum to a horizontal component. A pulsed radial

magnetic field removes the residual vertical motion down to 10−5 [rad], and then a weak

focusing field keeps the beam inside the storage area.
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Figure 3: Schematic representation of spiral injection for our case. The method uses solenoid

magnet. A radial fringe field, shown as BR, deflects the vertical component of the beam

momentum to a horizontal component.

Figure 4: One-quarter cut view of the storage magnet, with sample trajectories shown. The

beam enter through a hole in return yoke iron (we call it tunnel). Inside the magnet, there

are two volumes; injection volume (blue double arrow) and kick and storage volume

(red double arrow).
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iron 1, and go through the injection volume (blue double arrow). Then the

beam will be kicked vertically and stored into the precise magnetic field (red

double arrow). Required precisions of the magnetic field for the injection and

storage volume are 100 ppm and 1 ppm locally. Details of the vertical kicker130

are discussed in Section 4.2.

1Note that BNL E821 used a similar hole in the iron return yoke, which was easily com-

pensated for by adding additional iron beside the hole.
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2.2. Beam physics of 3-D spiral injection

In this subsection, motion of charged particle(s) in a constant magnetic field

is discussed. We use two reference frames (Figure 5). For discussion of the beam

inside the storage magnet, we use the lab frame. The beam frame is useful to135

discuss the beam transport line.

Figure 5: The lab frame and the beam frame are shown.

2.2.1. Kinetics of a single muon in the injection volume (below the tunnel)

The motion of a muon in the presence of a magnetic field, ~B, is written as

mµ
√

1− |V |2
d2

dt2
~R =

q

mµ

~V × ~B. (16)

Here, ~V and ~r are velocity and position vectors. ~B satisfies

∇ · ~B = 0,

∇× ~B = 0. (17)

In the injection volume below the tunnel, the magnetic field satisfies axial sym-

metry. The trajectory of a single muon is also axially symmetric. In this docu-140

ment, we take the solenoid axis as the z-axis.

Figure 6 depicts projected trajectory on the x − y plane. The first several

turns do not project to a true circle. The position and velocity vectors at an

arbitrary point-A are written as

~R = (x, y, z) = (Rcosθ,Rsinθ, z)

~V = (Vx, Vy, Vz) = (Vxycosφ, Vxysinφ, Vz). (18)
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Figure 6: Definitions of ~Vxy vector, φ and θ angles at an arbitrary point A.

The radial distance and velocity on the x − y plane are R =
√

x2 + y2 and145

Vxy =
√

Vx
2 + Vy

2 respectively. Note that absolute value of velocity (V =
√

Vxy
2 + Vz

2) never changes in the magnetic field.

The axially symmetric magnetic field at point-A is given,

~B = (Bx, By, Bz) = (BRcosθ,BRsinθ,Bz). (19)

Br and By satisfy
∂BR

∂z
− ∂Bz

∂R
= 0, (20)

derived from Equation 17.

Motion of a single muon in the magnetic field is then expressed in time-

derivative terms by use of BR and Bz as

dVz

dt
=

q

mµ
VxyBRsin(φ− θ), (21)

dφ

dt
=

q

mµ
Bz. (22)

The time rate of change of θ is related to Vxy as

R
dθ

dt
= Vxy. (23)
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Note that a projected trajectory is not a true circle in the injection volume

as shown in Figure 6. Therefore, distance the R is not the curvature. The

curvature ρ is given by

ρ =
(x′2 + y′2)3/2
∣

∣

∣

∣

∣

∣

x′ y′

x′′ y′′

∣

∣

∣

∣

∣

∣

, (24)

and ρ satisfies

ρ
dφ

dt
= Vxy. (25)

Here, x′ and x′′ denote first and second derivatives of time.

Left and right plots in Figure 7 depict Bz (red solid line) and BR (black150

solid line) along a trajectory as a function of z. BR has a local maximum at

z = 81.4 cm. BRsin(θ − φ) is also shown in green solid line. The red dotted

vertical line indicates z = 81.4 cm.
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Figure 7: Left: Magnetic field of Bz (main field) and BR (radial field) along the beam

trajectory. Right: Magnified view of BR and BR × sin(φ − θ). Red dotted vertical line

indicates z = 81.4 cm.

A trajectory given here is a center trajectory of the muon beam. We will

discuss how to decide it in the end of this subsection.155

Now, we change these time-derivative terms into space-derivative terms.

Rewritten, Equation 21 is

1

V

dVz

dz
=

q

mµ

Vxy

V Vz
BRsin(φ− θ). (26)

Here, we apply
1

dt
=

1

dz
Vz. (27)

14



The left side plot of Figure 8 depicts values of Equation 26 as a function of z.

These values are normalized by V . The right plot depicts Vz/V as a function

of z. These values are integrals of the left plot values.
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Figure 8: Left: Spatial derivation of Vz (Equation 26) as a function of z. Right:Vertical

velocity divided by V. These values are integrals of the left plot values.

Although BRsin(φ−θ) has a local maximum, the behavior of Vz/V is mono-

tonic. Bz and BR should change smoothly along the trajectory for smooth160

injection. The direction of BR should always be outward to deaccelerate the

vertical velocity in the injection volume (35 ≤ z ≤ 100 cm)). In order to es-

timate the error on BR in the injection volume, we tried trajectory tracking

by changing BR. We estimate that the error on BR should be kept within the

order of 100 ppm or offset ≤ ±2 Gauss in this injection volume, to control the165

vertical angle dispersion ∆Vz/V ≤ ±2 mrad at z = 35 cm point. This criteria

(±2 mrad) comes from Figure 20, green line.

The left plot in Figure 9 depicts ρ (in Equation 24) and r as a function of

z. As the muon approaches the storage region (z < 40), ρ and r come close to

33.3 cm. The right plot in Figure 9 depicts the time rate of change of φ and θ.170

As z approaches below 40 cm, these time rates also approaches the cyclotron

angular velocity at Bz=3T:

ωcyc =
q

mµ
Bz = 0.847 (rad/nsec). (28)

From this study, we learn the requirements for the magnetic field injection

volume (35 < z < 100 cm):
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function of z. Right: Time rate change of φ and θ as a function of z. As z approaches the

storage region (z < 40 cm), R and ρ approach the storage radius, 33.5 cm, and both time

rates come close to the cyclotron angular velocity at Bz=3T, as shown in Equation 28.

• Bz and BR should change smoothly along the center trajectory,175

• The direction of BR should be outward,

• Magnitude of BR as function of z should be determined from the center

trajectory,

• The error on BR should be of order 100 ppm.

Lastly in this subsection, a center trajectory is introduced. There are two180

requirements; (1) trajectory passes through the tunnel, (2) VZ/V ≈ −13 mrad

at z = 35 cm to meet to the capability of the vertical kicker. In order to decide

a suitable center trajectory, we tried reverse trajectories with several models of

magnet. By use of a certain given model, we calculated reverse trajectory which

starts at z = 35 cm, and its initial pitch is VZ/V = 13 mrad. Then we tried185

modification of a tunnel design in the upper yoke plate till a trajectory passes

through smoothly. Round shape cross section is better to minimize disturbance

of the magnetic field inside a yoke (z < 110 cm). We determine tunnel radius is

40 mm for straight cylinder shape. Once we decide a trajectory, requirements

of spatial distribution of the magnetic field are also automatically obtained.190

However, how do we design practical shape of magnet to meet magnetic field

requirements? This is an one of two crucial points to judge feasibility of the
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3-D spiral injection scheme. The MRI design technology allows us to calculate

specific parameters of magnet (coil shape, current density distribution, yoke

shape, and so on), if we specify spatial distribution of the magnetic field. Details195

of this technology is discussed in [7, 8].

The second crucial point is how large acceptance is allowed for the 3-D spiral

injection. We need to consider phase space matching at the entrance point the

tunnel in the upper yoke plate with careful consideration of the vertical kicker

and the weak focusing field. We will discuss how to estimate acceptance of the200

beam injection in the following sections.
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2.2.2. Spatial correlation around a base trajectory (below the tunnel)

Figure 10 depicts 20 trajectories (red lines) around a base (or reference)

trajectory (black solid line). A zoom in view is on the right. Reference trajectory

is one of the best inverse trajectory samples of a single muon, starting from205

the center of solenoid magnet to the tunnel in the upper end plate. To find a

base trajectory and appropriate tunnel geometry, we repeated inverse tracking

computations as muon goes along the center line in the tunnel. Red sample

trajectories are also obtained by inverse computation changing initial positions

of inverse trajectory. Each trajectory satisfies the correlations developed in210

Equations 21− 25.
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Figure 10: A base trajectory (black solid line) and good sample trajectories (red solid lines)

in the injection volume, below the tunnel are shown. A magnified view is on the right.

Sliced views around z=100 cm are shown in Figure 11. Here, r =
√

x2 + y2

and definitions of φ and θ were introduced in Figure 6. These plots indicate lin-

ear correlations around a base trajectory. Because the magnetic field below the

tunnel volume is axially symmetric, the trajectories also satisfy axial symmetry.215
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correspond to twenty good samples around the base. R =
√

x2 + y2 and the definitions of φ

and θ are introduced in Figure 6. We find linear correlations around the base trajectory.
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Average slopes of these correlations in Figure 11 are obtained as follows:

〈

∆r

∆z

〉

=
1

20

10
∑

i=−10

Ri −R0

zi − z0
,

〈

∆Vz/V

∆z

〉

=
1

20

10
∑

i=−10

(Vz
i − Vz

0)/V 0

zi − z0
,

〈

∆θ

∆τ

〉

=
1

20

10
∑

i=−10

θi − θ0

(zi − z0)/Vz
0 ,

〈

∆φ

∆τ

〉

=
1

20

10
∑

i=−10

φi − φ0

(zi − z0)/Vz
0 . (29)

Values in parentheses 〈· · ·〉 are average values of 20 sample trajectories and the

superscript 0 represents the base trajectory. ∆τ relates to vertical displacement

divided by Vz
0. Average correlation slopes are compared with equations of a

single base trajectory (Equations 26, 22 and 23) as follows:

〈

∆r

∆z

〉

⇒ dr

dz
, (30)

〈

∆Vz/V

∆z

〉

⇒ dVz/V

dz
, (31)

〈

∆θ

∆τ

〉

+ ωcyc ⇒
dθ

dt
, (32)

〈

∆φ

∆τ

〉

+ ωcyc ⇒
dφ

dt
. (33)

The left plot of Figure 12 depicts 〈∆r/∆z〉 as a function z in green filled

circles. The blue solid line is dr/dt from a base trajectory for comparison.

They are in good agreement. Similarly, the right plot depicts 〈∆(Vz/V )/∆z〉 as
a function of z in blue filled circles. The pink line is (dVz/V )/dz from a base220

trajectory. Figure 13 depicts the angular velocities of φ and θ as a function of z.

Open circles are 〈∆θ/∆τ〉 and 〈∆φ/∆τ〉. Solid lines are dφ/dt and dθ/dt from

a single trajectory. We have introduced ∆τ instead of ∆z in order to compare

with dθ/dt and dφ/dt
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Figure 12: Left: Comparison between 〈∆r/∆z〉 vs. dr/dz in Equation 30. Right: Comparison

between 〈(∆Vz/V )/∆z〉 vs. (dVz/V )/dz in Equation 31. Slopes of the linear correlations

around the base trajectories are consistent with spatial derivations of the single base trajectory

(inside the injection volume below the tunnel).
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dθ/dt in Equation 33.
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In this way, we have introduced linear correlations around a base trajectory,225

and confirmed that these correlations are consistent with time-derivative or

spatial derivative terms of a single base trajectory as shown in Figure 12 and 13.

Linear correlations are valid as long as the magnetic field is axially symmetric,

below the tunnel volume.

The next step is to study whether these linear correlations still describe230

the trajectories inside the tunnel. The magnetic field inside the tunnel will be

small, but it changes field profile dramatically. Moreover, the field is not axially

symmetric anymore.
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2.2.3. Trajectories inside the tunnel

There will be a tunnel in the upper end plate of the storage magnet, in235

order to pass the muon beam from the exit of transport line into the storage

magnet. Figure 14 depicts a cut view of the tunnel with sample trajectories.

The magnetic field strength is also shown in colored contour. Field changes

dramatically at the tunnel exit. Left and right plots in Figure 15 depict the

geometric form of the tunnel. Tunnel entrance and exit points are at z = 145 cm240

and z = 110 cm, respectively. The tunnel is a straight cylinder shape with a

radius of 35 mm.

Figure 14: Closer cut view of the tunnel. Red arrows show geometric information. The

magnetic field strength is also shown in colored contour. As we emphasize in the dotted

ellipse, the field changes dramatically at the tunnel exit.

Figure 16 and 17 depict the magnetic field profile of Bz, Bx and By along

the base trajectory as a function of z. We set five 3-dimensional straight lines

through the tunnel to see the field profile. One is along geometric center of245

tunnel, and another four lines are displaced in parallel. The field profile along

the center line is aqua blue. Green and black lines depict the field profile along

displaced lines in the z direction ± 2 cm. Orange and purple lines depict field
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profile along displaced lines in the y direction ± 2 cm. Bz changes by 2 T

between 105 ≤ z ≤ 115 cm (Figure 16) and Bx and By have non-linear behavior250

(Figure 17). Bx, By and Bz for z ≥ 120 cm are smaller than 0.1 T. Inside the

tunnel is not a simple drift space, and we look at trajectories in the next.
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Figure 15: Geometric form of the tunnel is shown in red solid line. The base trajectory is

also shown. X-Z view in the left and X-Y view is in the right.
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Figure 16: Magnetic field profile (Bz) as a function of z. Several profiles are along three

dimensional straight lines. Blue is along the geometric center of the tunnel, the other four

lines are displaced in ±∆y(horizontally) and ±∆z (vertically) directions.
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First we check whether linear correlations are still useful descriptions inside

the tunnel. Figure 18 depicts beam shapes at z = 100, 110, 120, 140 and 150 cm

in different colors. In order to compare beam shape at different z points, we plot255

relative differences compared with the base trajectory. As we saw in Figure 11,

the beam shape is linear around the base trajectory at the z = 100 cm point

(below the tunnel; magnetic field satisfies axial symmetry). However, the beam

shapes lose linearity as z increases. Correlations are not linear anymore at

z ≥ 120 cm. It is clear especially in the ∆z−∆φ plot. But, if we take trajectories260

within |∆z| ≤ 0.5 cm in Figure 18, we find reasonably ”linear phase-space” shape

even at the z = 150 cm point. Therefore we can utilize this feature to determine

the desired beam shape at the exit point of the beam transport line as we will

discuss in subsection 3.
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Figure 18: Beam shapes at z = 100 ∼ 150 cm. These are similar plots of Figure 11. But we

plot relative differences compared with the base trajectory.

27



2.3. Acceptance of the beam at the injection point265

In this subsection, we estimate the acceptance of the beam at the injection

point (z = 150 cm). Inside the acceptance, the beam should satisfy the criteria

for good storage.

Figure 19 depicts sample trajectories (left) and the y− z coordinate of each

trajectory near the injection point (right). We set more than 6000 trajectories.

Each colored area contains fifty trajectories. The red solid line corresponds to

the correlation, which we introduced in the previous sections. We can express

this red line as follows:

z = p× y + q, (34)

here p and q are slope and intercept parameters. Samples in each colored area

are obtained by changing y and q values by 0.5 mm interval. Therefore, these270

all samples satisfy such linear correlations.

Most of sample trajectories go through the tunnel, but some of them are

reflected inside the storage volume because of an weak focusing field. As we

mentioned briefly in subsection 2.1, there is an weak focusing field in storage

volume (see Figure 2). And we apply vertical kick around z = 35 cm, in order275

to kick the beam into the storage volume. Therefore, we need to set a criteria

to meet requirements of the kicker system and weak focusing field.

Figure 20 depicts z vs.∆Vz/V plot around z = 35 cm. The green region

meets the criteria of good kick and stable storage. Details of this estimation

are discussed in section 4. The red envelope in the right plot of Figure 40280

corresponds to the green region in Figure 20. We may accept the black region

as good trajectories, here.

Black dots on the right side plot in Figure 21 depicts y−z cut view of selected

trajectories near the injection point. There are 207 trajectories. Left side plot

depicts the selected trajectories above kick point (z ∼ 35 cm). Figure 22 depicts285

geometric information of kicker coils and trajectories. Zoom up is in the right

plot. Details of the kicker system are discussed in Section 4.2.

Now we take a closer look of the beam shape at the injection point. Selected
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Figure 19: Sample trajectories and y− z cross section at the injection point. There are more

than 6000 trajectories. Each colored area in the quilt contains fifty trajectories. They satisfy

linear phase-space correlations, which we introduced in the previous sections (red solid line).
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Figure 20: Correlation of z vs.∆Vz/V around z = 35 cm is shown. A criteria to meet

requirement from kicker system and good storage inside a weak focusing field is shown in

green line. This green line corresponds to red envelope in the right side plot of Figure 40. We

may accept the black region as good trajectories, here.
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Figure 21: Similar plot to Figure 19 but we show selected trajectories. Black dots on the

right side plot depict a y − z cut view of selected trajectories at the injection point. There

are 207 trajectories.

Figure 22: Geometric information of the kicker coils as well as good sample trajectories. A

magnified view with the upper kicker coils is shown in the right. The beam passes between

the upper kicker coils. The radial distance between the two coils is 6 cm.
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trajectories are shown in black dots in Figure 23, like a boomerang shape. These

black boomerangs correspond to the beam acceptance at the injection point.290

Similarly, the four plots in Figure 24 also show the beam shape in the beam

frame (See Figure 5). We change the coordinate system because the beam

frame is useful to design the beam transport line. We select the relatively linear

areas shown on Figure 24 and set them as target beam shapes. We design the

beam transport line to meet these target shapes (see section 3).295
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Figure 23: Beam shapes at the injection point. Black dots areas, which look like a boomerang,

are selected trajectories. These boomerangs correspond to the beam acceptance at the injec-

tion point.
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Figure 24: Similar plots to Figure 23, but using the beam frame. We select relatively

linear area around red lines as target beam shapes. Slope values of red lines (KT , KN , Ka

and Kb) are introduced in Figure 31 in section 3. We design the beam transport line to meet

these target shapes.
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Before we move to a discussion of the beam transport line design, we should

look at the selected trajectories inside the tunnel. Blue and red solid lines in

Figure 25 are selected trajectories. Red line trajectories correspond to roughly

the target beam shape. The black line is the tunnel shape. As shown in the right

side plot in Figure 25, red line trajectories gather around the geometric center300

of the tunnel exit.
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Figure 25: Left: The x− z view of the selected trajectories (blue and red solid lines) inside

the tunnel are shown. Red line trajectories correspond to around target beam shape. Black

line is tunnel shape. Right: Same for The x− y view.

Figure 26 and 27 depict the magnetic field profile along trajectories. Blue

and red solid lines correspond to trajectories which are introduced in Figure 25.

For comparison, magnetic field profile along 3-dimensional straight lines (which

are introduced in Figure 16 and 17 are also shown. The selected trajectories305

(red) are not much affected by Bx and By.
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Figure 26: Magnetic field profile of Bz along trajectories are shown. Blue and red solid

lines correspond to trajectories in Figure 25. For comparison, the magnetic field profile along

3-dimensional straight lines (which are introduced in Figure 16 and 17 are shown.
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trajectories (red) see a small Bx and By .
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3. Beam Transport Line

In this section, we discuss the beam transport line from the LINAC exit to

the injection point of the storage magnet. Figure 28 and 29 depict schematic

views. Most parts of transport line are tilted along a 25◦ slope to meet the re-310

quirement of beam injection. The difference in height is more than 3 m between

the start and end points. The transport line can be divided into three major

parts as follows.

Figure 28: Schematic view of the beam transport line. This transport line connects between

the exit of the LINAC and the injection point of the storage magnet. The beam line consists

in mainly three parts: beam bending section, transverse-normal coupling section and free drift

section.

Figure 29: Left: Difference in height between the start and end points is shown. Right: Free

drift space inside the temperature controlled room is shown. The injection point is just above

the upper yoke of the storage magnet.
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Beam bending section. In order to bend the muon beam by 25◦ vertically,

and minimize vertical energy dispersion, there are two dipole magnets and three315

quadrupole magnets in this section. Each dipole magnet bends the beam by

12.5◦.

Transverse and normal coupling section. As we discussed in section 2,

strong coupling between transverse and normal (vertical) components is required

from the 3−D spiral injection scheme. We apply appropriate coupling in this320

section by use of eight rotated quadrupole magnets.

Free drift space section. As shown in the right plot in Figure 29, the storage

magnet is inside a constant temperature room. Therefore, this transport line

needs to include 3.5 m of free drift space. In principle, we do not plan to put

any massive equipment (magnets) inside the constant temperature room.325

However, we would mention about fraction of muon decay loss. Time of

flight of the muon beam from the entrance of beam transport line to kick point

in the storage magnet is 67 nsec. The transport line is 8.5 m and, 5 turns in the

injection volume (see Figure 10). Therefore, decay loss in the entire injection

path is:

ǫ = 1− exp

(

− 67nsec

6.6µsec

)

∼= 0.0101, (35)

here 6.6 µsec is the lifetime of the muon (γµ = 3).

In this section, we use the beam frame, which denotes ~L as beam direction

and ~T as transverse direction as shown in right side picture of Figure 5. ~T stays

always on the x-y plane in the lab frame. ~N is an outer product of ~L and ~T .330

3.1. Transfer matrix of transport line

The transfer matrix M is introduced here. ~Xin and ~Xout are the phase space

at the entrance and exit points. They are related as:

~Xout = M ~Xin, (36)
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and

~Xin/out =

















∆T

∆VT /V

∆N

∆VN/V

















in/out

. (37)

This four-by-four matrix M reflects the beam motion in normally ( ~N) and

transversely (~T ). Here, we do not treat the longitudinal component of the

beam. ∆T and ∆N are positional displacements from the center of the beam.

∆VT /V and ∆VN/V are relative differences of beam velocity from the center335

values of the beam.

In general, the transfer matrix M is obtained from Twiss parameters at the

entrance and exit points of the transport line. M is written as:

M = Uout
−1D,

Uout =

















µ 0 −R4 R2

0 µ R3 −R1

R1 R2 µ 0

R3 R4 0 µ

















,

D =





DT 0

0 DN



 . (38)

Here, Uout is a 4×4 rotation matrix at the exit of the transport line. Uout consists

in four independent values of R1, R2, R3, and R4. These are the coupling pa-340

rameters. They indicate the strength of coupling between normal and transverse

beam motion. Because the parameter µ is defined as µ =
√

1− (R1R4 −R2R3),

rotation matrix Uout is symplectic. In the case of a decoupled beam, R1 ∼ R4

are all zero, and hence the rotation matrix is an identity matrix. (That is why

we do not discuss the rotation matrix at the entrance of the beam transport345

line, Uin in Equation 38.)

Matrix D is a 4 × 4 block diagonal matrix. It consists in 2 × 2 matrices of
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DT and DN . DT is expressed as follows:

DT =







1√
βT

out
0

αT
out√

βT
out

1√
βT

out







−1

ΦT







1√
βT

in
0

αT
in√

βT
in

1√
βT

in






. (39)

αT
in(out) and βT

in(out) are Twiss parameters of the transverse elements at the

entrance (or exit) point. The 2 × 2 matrix ΦT is related to the phase advance

and is expressed as:

ΦT =





cosφT sinφT

−sinφT cosφT



. (40)

We fix φT = 0 now, because φT does not affect on the beam shape at the

exit point. DN is written in the same way as DT , but with normal (N) Twiss

parameters, also we set φ0 = 0.

In order to determine the transfer matrix M , we need to set the Twiss pa-350

rameters at the entrance and exit points. The Twiss parameters at the entrance

point are given by the LINAC design, and are listed in Table 2.

Table 2: Beam parameters at the entrance of transport line (the exit of LINAC )

emittance [rad-m] ǫT = 1.5π × 10−6

ǫN = 1.5π × 10−6

Twiss parameters αT
in = 0.0, βT

in = 10.0

αN
in = 0.0, βN

in = 10.0

In general, as long as there is no coupling between the ~T and ~N components,

the average beam size is directly related to the Twiss parameters:

αT =
〈∆T ·∆VT /V 〉

ǫT
,

βT =

〈

∆T 2
〉

ǫT
,

1 + αT
2

βT
=

〈∆VT
2〉

ǫT
. (41)

The same goes for ~N components.355
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Figure 30: The beam phase space at the entrance point is shown. There are 2000 samples.

Because αT
in and αN

in are zero, the phase spaces of (∆T vs. ∆VT /V ) and (∆N vs. ∆VN/V )

have no correlation. We assume the beam shape is Gaussian transversely and normally.
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Because αT
in and αN

in are zero, the phase spaces (∆T vs. ∆VT /V ) and

(∆N vs. ∆VN/V ) have no correlation. We assume the beam shape is Gaussian

transversely and normally. Figure 30 depicts the beam phase space at the

entrance point. 2000 sample events are shown.
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Twiss parameters at the exit of beam transport line. Figure 31 depicts the beam360

shape at the exit of the transport line. The Red lines in Figure 31 are target

slopes which we have introduced in Figure 24. Especially, the two slopes of

upper the two plots, which we call KT and KN , are directly connected to the

Twiss parameters. Twiss parameters at the exit point are obtained as follows:

αT
out = KT × βT

in, βT
out = βT

in,

αN
out = KN × βN

in, βN
out = βN

in, (42)

here, we set βN
out and βT

out with no change.365
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Figure 31: Beam shape at the exit of the transport line is shown. We apply matrix M with

sample events shown in Figure 30. The red lines are target slopes which we have introduced

in Figure 24. Four slopes, which we call KT , KN and KA and Kb, are connected to Twiss

parameters.

Table 3 shows the Twiss parameters at the exit of transport line.

Now, we discuss how to estimate the coupling parameters R1 ∼ R4. The two
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Table 3: Beam parameters at the exit of the transport line (the injection point)

Twiss parameters Coupling parameters

αT
out = 9.50, βT

out = 10.0 R1 = −1.03,R2 = −1.49

αN
out = 7.06, βN

out = 10.0 R3 = −0.86,R4 = −0.61

slopes of the bottom two plots in Figure 31, which we call Ka and Kb, connect to

the coupling parameters R1 ∼ R4. However, an analytical calculation is difficult.

Therefore, we use an iterative calculation method using a simple model.370

We set an input beam shape as a circle with radius is 5 mm, and set an

initial momentum spread of zero for both transverse and normal components.

The black solid lines in Figure 32 depict the input beam shape, and the red

lines are the target slopes. Then we set arbitrary R1 ∼ R4 values and calculate

the transfer matrix M using Equation 38. The blue ellipses are output beam375

shape. By changing the R1 ∼ R4 values and repeating the matrix calculation,

we get reasonable ellipses whose major slopes agree with red reference slopes.

In this way, we determine the coupling parameters at the exit of transport

line. Because the 3−D spiral injection scheme requires a strongly coupled beam

vertically and normally, the coupling parameters R1 ∼ R4 are large compared380

to a typical beam line.

Lastly, we note that eight parameters (listed in Table 3) are required to

determine the transfer matrix M . Therefore, we use eight rotated quadrupole

magnets in the coupling section2. Once we decide the transfer matrix M , we can

design real magnet components by use of SAD (Strategic Accelerator Design).385

Detailed discussions for practical design of beam transport line is found in [5].

2We may reduce the number of rotated quadrupole magnets to six, but we have decided

to use 8 to allow greater flexibility
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Figure 32: Explanation of an iterative calculation method using a simple model is shown. We

set the input beam shape as a circle with radius 5 mm, and set the initial momentum spread

to zero for both transverse and normal components. Black solid lines depict the input beam

shape, and the red lines are the target slopes. By changing R1 ∼ R4 values and repeating

the matrix calculation, we get reasonable ellipses with major slopes that agree with the red

target slopes. The blue ellipses are resulting output beam shape.
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4. Weak focusing system and kicker

The muon storage ring for this experiment will be a precession field 3 Tesla

solenoid with cylindrical iron poles and return yoke. The solenoid is being

designed now in collaboration with a private company to a specification of <390

1 ppm variation of the field locally within the storage region. The storage region

is defined on the mid-plane, with a radius of 33.3±1.5 cm and height of ±5 cm;

a weak focusing magnetic field will be applied to keep vertical motion of

the beam to within a few cm. In this section, we introduce two major topics.

• Weak focusing magnetic field in the storage volume395

• Kicker from the injection area to the storage area

Detail discussion of weak focusing field index is given in [5].

4.1. Weak focusing magnetic field in the storage volume

To keep the beam within the storage region, we need to focus the beam

horizontally and vertically. We will employ a weak focusing magnetic field400

system to the beam.

Ideal case. A weak focusing magnetic field in a cylindrical coordinate system is

expressed as:

BZ = B0

(

1− n
∆R

R

)

,

BR = −n
Z

R
B0, (43)

here B0 = 3 Tesla is the main solenoidal field at Z=0 cm. R0 = 33.3 cm and

∆R = R−R0. The field index n is

n = −R0

B0

δBZ

δR
(44)

The focus condition is obtained when we set 0 < n < 1. ( n < 1; for radial

focus. And n > 0; for vertical focus.)405
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Figure 33: Example field of n = 1.5× 10−4 case in Eq. 43.

Figure 33 depicts an example case of n = 1.5 × 10−4 in Eq. 43. Note that

BR does not change as a function of R, but changes vs. Z. BZ , on the other

hand, does change as a function of R, but does not change vs. Z.

We introduce horizontal (radial direction) and vertical (Z direction) transfer

matrices for a single turn:410

MR =





cos
(

s
R0

√
1− n

)

R0√
1−n

sin
(

s
R0

√
1− n

)

−
√
1−n
R0

sin
(

s
R0

√
1− n

)

cos
(

s
R0

√
1− n

)



 (45)

and

MZ =





cos
(

s
R0

n
)

R0

n sin
(

s
R0

n
)

− n
R0

sin
(

s
R0

n
)

cos
(

s
R0

n
)



 (46)

here, s is the path length. s = 2πR0 after single rotation in the horizontal plane.

Matrix at s = 0 = 2πR0 is also expressed by use of twiss parameters

β(0), α(s), γ(0) and phase advance µ(0) as follows:

M =





cosµ(0) + α(0)sinµ(0) β(0)sinµ(0)

−γ(0)sinµ(0) cosµ(0)− α(0)sinµ(0)



 (47)

Set n = 1.5× 10−4, and comparing Eq. 47 and Eq. 45 or Eq. 46, we obtain415

β(0), α(0), γ(0) and tune ν(0) = µ(0)/2π for horizontal motion.

βR(0) =
R0√
1− n

∼= 33.3cm

αR(0) = 0

νR(0) =
√
1− n ∼= 0.999925 (48)

45



Similarly, parameters for vertical motion are

βZ(0) =
R0√
n
∼= 26.94m

αZ(0) = 0

νZ(0) =
√
n ∼= 1.2247× 10−2 (49)

Momentum dispersion is:

η(s) =
2R0

1− n
∼= 66.6m

η′(s) = 0 (50)

Figure 34: In the weak focusing volume, the muon is trapped in the potential. Its vertical

beam motion is simple harmonic motion.

Figure 34 depicts the vertical motion in the weak focusing field. This is

simple harmonic motion. The green dashed circle is the central orbit on the420

horizontal plane. If the muon is above (or below) the plane, the muon receives

a downward(upward) force. One cycle of vertical simple harmonic motion takes

604.2 nsec for n=1.5×10−4. This value is far away from the g−2 period 2.2 µsec.

Designed weak focusing field. Figure 35 depicts a realistic weak focus field de-

signed by a private company H. We design the good field region to be between425
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Figure 35: Realistic example field designed by Private company H.

|z| < 10cm for stored beam. Because the BR shape is good for |z| < 20cm, we

consider this region to represent the weak focusing field.

Applying this field information, the vertical phase-space correlation in the

storage area is estimated by Runge-Kutta integration. Results are shown in

Fig. 36 as gray lines. Closed ellipses, which are between |z| < 25cm, correspond430

to trapping orbits. VZ/V is the pitch angle of the muon. In the storage region, a

pitch angle changes negative and positive alternately. We estimate the vertical

tune from Fig. 36. The value is consistent with Eq. 49. The green arrow in

Figure 36 depicts the action of a vertical kick from the injection volume to the

storage volume. We are aiming to store the beam within |z| < 10mm. We will435

discuss the vertical kicker in section 4.2.

47



Z [cm]
-50 -40 -30 -20 -10 0 10 20 30 40 50

V
Z

/V
 [r

ad
]

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Figure 36: Phase-space correlation estimation with realistic weak field. Closed ellipses, which

are in between |z| < 25cm, corresponds to trapping orbits. VZ/V is the pitch angle of the

muon. In the storage region, the pitch angle changes negative and positive alternately. The

green arrow depicts the action of a vertical kick.
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4.2. Vertical kicker

The role of the kicker is to kick the muon beam into the very center of the

storage volume. The muon beam is guided down to z ∼ 35cm by the solenoidal

fringe field only, reducing the pitch angle of the incoming beam to ten degrees.440

Then, the muon beam crosses the edge potential of the weak focusing field.

In the weak focusing field, the muon beam motion becomes simple harmonic

motion in vertical and the designed vertical amplitude is 10 mm.

We plan to apply the vertical kick for several tens of cyclotron periods. This

allows us to set the peak kicker power lower, without strict jitter requirements.445

Yellow triangle in the center of in Figure 2 depicts an image of kicker action

where the 3-D injected beam becomes almost a 2-D stored beam.

In this section we discuss the requirements for the kicker field, first. Secondly,

we introduce the design of the Kicker system and a study using a test bench.

Requirement for kicker field. Pulsed axisymmetrically-excited field is required

for the vertical kicker. For our case, the radial field component is important.

Its time dependence is,

Bkick(t) = Bpeak · sin
(

t

2πTkick

)

· exp
(

− t

τ

)

, (51)

with Bpeak of order a few Gauss, and Tkick several hundred nsec.450

We have tried calculations with Runge-Kutta integration for several types of

kicker field, summarized in Table 4. In the second column in the table, sine type

means that its time distribution is a single sine wave shape, and kick period is

Tkick. Similarly, half-sine means that its time distribution is a half sine wave

shape, and kick period is Tkick/2.455

In this study, we set Bpeak constant for simplicity. But we should consider

spatial distribution of Bpeak for a more realistic study.

Figure 37 depicts five types of kicker action with a single muon. A muon

receives the kick force from the height z= 35cm, then reduces its absolute pitch

angle as the height goes zero. The path from the start to the end points are460

different between sine and half-sine types. Black and red lines corresponds to
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type line color shape Bkick Tkick τ nsec acceptable

number Gauss nsec nsec or not

1 black sine 2 500 2000 ©
2 red sine 1.7 530 ∞ ©
3 green half-sine 4 390 2000 ×
4 blue half sine 3 480 ∞ ×
5 orange half-sine 2.2 655 ∞ △

Table 4: Five types of kicker parameters.

a sine type kicker. The other three lines correspond to half-sine type kicker.

Sine types pass through the horizontal mid-plane (z= 0), and reach z= −20 cm.

Then they change the sign of pitch angle from negative to positive, and finally

converge to the very center region. On the other hand, half-sine types do not go465

below the horizontal plane. They directly converge to the center region. This

study shows us several possible types of vertical kicker configuration. However

because of an electronics design limitation, we have learned that a field strength

below 2 Gauss is a realistic number. Therefore, we decide that type-2 is a good

candidate. The maximum value 2 Gauss is obtained from a study at the kicker470

test bench. We will discuss this topic in the next section .
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Figure 37: Five types of kicker action is shown.
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Figure 38 depicts sample trajectories of kicker type-2. Figures 39 and 40 are

magnified views of the end and start points of kick action. The red thick closed

line in the right plot shows the envelope of the beam phase-space correlation

around the vertical position z=35 cm. This line corresponds to the green line in475

Figure 20. If we could inject the beam inside of this red closed line, and apply

a proper kick, the beam would be stored in the very center |z| < 10 mm. This

is the goal of the beam injection.

Z [cm]
-50 -40 -30 -20 -10 0 10 20 30 40 50

V
Z

/V
 [r

ad
]

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Figure 38: Sample trajectories of type-2 kicker.
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Figure 39: Magnified view of the end point of kicker action in Figure 38.
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corresponds to the green line in Figure 20.
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Real design of the kicker. Figure 41 depicts the kicker coils set-up in the stor-

age ring: An anti-Helmholtz type coil system (which does not satisfy the exact480

Helmholtz condition), shown in red, has four loops. Pairs of coils above and

below the horizontal plane have different radii and are separated 6 cm horizon-

tally. The upper and lower coils are separated by 35 cm. The kicker coils do not

interfere with the storage nor detector volumes. (There is a small interference

for positrons from decaying muons at one position of azimuth.)485

The current direction of the upper pair of coils is clockwise. The current in

the lower pair of coils is counterclockwise. Such a coil system generates mainly

a radial field around the region of |z| < 35 cm. This radial field is cylindrically

symmetric and applies a vertical kick to the muon beam.

Figure 41: Image of kicker coils. The inner and outer radii are 30 cm and 36 cm, respectively

and the upper and lower coils are located at z = ±35 cm. The current is opposite between

the upper and lower coils. This coil system generates mainly a radial field around the region

of |z| < 35 cm.

4.3. Potential issues on the weak field and the kicker system490

Horizontal error field estimation. The horizontal transfer matrix shown in Eq. 45

is rewritten as

MR
∼=





cos s
R0

R0sin
s
R0

− 1
R0

sin s
R0

cos s
R0



 (52)

where we use n ∼= 0. We assume the presence of a horizontal error field in a

certain small region δl along the orbit. This error field gives a horizontal kick
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to the beam. As shown in the left side of Fig. 42, the horizontal momentum

direction is changed for every turn by horizontal kicks as:

θkick ≡ ∆BZ

B

δl

R0
. (53)

Since the horizontal tune∼= 1, the beam is kicked every turn in the same region.

In this case, displacement from the ideal orbit becomes large at two points:

φ = π/2 and φ = 3π/4 as shown in the right side of Fig. 42.495

Figure 42: Left: horizontal momentum direction is changed for every turn by horizontal

kicks. Right: displacement from the ideal orbit becomes large at two points:φ = π/2 and

φ = 3π/4.

The displacement ∆R is,

∆R = R0∆θkick (54)

for a single turn. To control the displacement ∆kick to within 5 mm for up to

m = 5000 turns, mR0θR ≤ 5 mm, and the kick angle for each turn should be

θkick ≤ 3× 10−5. Therefore, we have

∆BZ

B

δl

R0
≤ 3× 10−5. (55)

Finally we get the error field requirement for BZ variation in horizontal plane

∆BZ

B
≤ 1× 10−6 for δl = 10cm. (56)
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Vertical error field estimation. The vertical transfer matrix shown in Eq. 46 is

rewritten as

MZ =





1 s

− ns
R0

2 1



 (57)

where we use n ∼= 0. This matrix is approximately a drift matrix in free space.

The error kick for a single turn for the vertical direction is

θkick ≡ ∆BR

B

δl

R0
. (58)

The vertical displacement after mth turns becomes

∆Z ∼= 2πR0θkick
m− 2

2
. (59)

Since the vertical tune is 8.9 × 10−3, the beam turns 112 times horizontally

during one cycle of vertical beam motion. That is, the vertical direction of

beam motion flips every 56 turns as shown in Fig. 43.

Figure 43: Vertical direction of beam motion flipped at every 56 turns due to the vertical

tune of 8.9× 10−3. The beam turns 112 times horizontally during one cycle of vertical beam

motion.

500

To control displacement ∆kick within 5 mm up to m = 56 turns, mR0θkick ≤
5 mm, the kick angle for each turn should be θkick ≤ 1.52 × 10−6. Therefore,

55



we have
∆BR

B

δl

R0
≤ 1.52× 10−6. (60)

Finally we get
∆BR

B
≤ 4.8× 10−6 for δl = 10cm. (61)

For both horizontal and vertical, the weak focusing field should be controlled

to a 1 ppm level of the main field B=3T.

the Kicker system. Two potential issues for the kicker are eddy currents and

induced voltage in a quench.

Eddy currents generated in the cryostat wall cause an error field that needs505

to be considered carefully. We estimated the field from an eddy current on the

Cryostat wall at the radius=60cm by OPERA simulation.

We tried two types of materials for the cryostat wall; one is SUS304(stainless

iron) and the other is aluminum. Figure 44 displays the total eddy current in

the cryostat wall as a function of time. Eddy currents from both materials are510

nearly identical and cannot be separated on the plot.

The profile of the eddy current is similar to that of the kicker current. and

does not stay in the wall more than 10 ns after the kicker pulse. Figure 45

displays the current density profile at t=100 ns. The strength of field changes

as a function of time, while the density profile on the wall surface does not515

change much and the dominant component of the current direction is parallel

to the kicker coils.

By use of this profile, we estimate the residual field strength from the kicker

around the region of the muon orbit as displayed in Fig. 47. The horizontal

axis corresponds to the vertical position. The plot covers the |z| < 10 cm region520

where the muon beam stays in the first few hundred nsec. Note that the residual

field for the solenoid axis and radial components ∆BR and ∆Bz are negligible

compared to the main field (Bz = 3 Tesla) from the main coils at the level of

0.1 ppb at t≥ 160 ns. From this study, we conclude that the field from eddy

current on the cryostat wall goes off t≥ 160 ns at the level of 0.1 ppb.525
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Figure 44: Calculation of total eddy current in the wall as a function of time. Time=0 ns is

the rising edge of the kicker current. Eddy currents from both materials are very similar. The

profile of the eddy current is similar to that of the kicker current (Tkick = 150 ns, and does

not stay in the wall.

As for the quench effect on the kicker system, it turns out that this effect

is quite small and negligible, because the decay time from the maximum field

strength B=3 Tesla is the order of a few seconds. For example, in the case of

decay time ∆t = 1 sec, the dielectric voltage V per kicker coil (radius=0.5m,

area S=0.785 m2 ) from the quench is

V = −∆Φ

∆t
= 2.5 (V). (62)

Here,

∆Φ = B · S = 3 · 0.785 (Tesla ·m2). (63)

The induced voltage from the quench effect can be easily consumed by the

normal resistors in the power supply circuit.

Other major issues for the kicker are the following:

• Kicker field flatness as function of radial position,

• Residual voltage in the circuit may cause an electric field in the space,530
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Figure 45: Eddy current density on the SUS316 surface at radius=60 cm at time t=100 ns.

The left side graph legend colors shows current densities from 0 to 3 A/cm2. Yellow and red

regions correspond to ∼ 2 A/cm2. The two pairs of kicker coils are shown in red.
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Figure 46: Eddy current density on the SUS316 surface at radius=60 cm at time t=220 ns.

The left side graph legend colors shows current densities from 0 to 0.1 A/cm2. Green region

corresponds to 0.04 A/cm2. The two pairs of kicker coils are shown in red.
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Figure 47: Residual magnetic field strength (Tesla) from the eddy current as a function

of vertical position (solenoid axis direction). The black solid line corresponds to the field

component along the solenoid axis ∆Bz . The red dotted line corresponds to radial field ∆BR.

The horizontal axis corresponds to vertical position. This plot covers the |z| < 10 cm region

where the muon beam stays in the first few hundred nsec. Note that these ∆BR and ∆Bz are

the residual field from eddy current. We have Bz = 3 Tesla from the main coils. Therefore

the residual field from eddy current goes off t≥ 160 ns at the level of 0.1 ppb.
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Figure 48: Residual magnetic field strength (Tesla) from the eddy current as a function

of vertical position (solenoid axis direction). The black solid line corresponds to the field

component along the solenoid axis ∆Bz . The red dotted line corresponds to radial field ∆BR.

The horizontal axis corresponds to vertical position. This plot covers the |z| < 10 cm region

where the muon beam stays in the first few hundred nsec. Note that these ∆BR and ∆Bz are

the residual field from eddy current. We have Bz = 3 Tesla from the main coils. Therefore

the residual field from eddy current goes off t≥ 160 ns at the level of 0.1 ppb.
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We are determining to the best configuration for the coils and expect to achieve

sufficient field flatness.
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5. Further studies for the higher injection efficiency

We discuss how to estimate injection efficiency and what items are needed as

further studies. Injection efficiency is estimated by counting how much muons,535

which are in the given phase-space at the exit of the LINAC (or the entrance

ob the transport line), can be injected in to a required phase-space area which

satisfies criteria at the kick point (z ∼ 35 cm) shown in Figure 40. (See discus-

sion in Section 3) Note that these injection efficiencies can be changed depend

on the kicker parameters. Actually, we continue to make efforts to broaden the540

areal size of Figure 40 now.

In the current condition, we estimate injection efficiencies at several initial

beam conditions at the entrance of the transport line. Table 5 shows the sum-

marize numbers. The third column shows the numbers of successfully injected

muons divided by total injection.545

At first we tried cases of momentum dispersion ∆p/p are zero. We have

two sets of initial βN,T = 10 or βN,T = 20 3. We also have two more subsets:

with or without horizontal and vertical coupling cases. In the same way, we

tried momentum dispersion of ∆p/p ≤ 0.05% cases, ∆p/p ≤ 0.1% cases and

∆p/p ≤ 1% cases.550

From this study, we learned:

• the beam momentum dispersion within ±0.05% is acceptable,

• Initial twiss parameter beta = 20 is good for phase-space matching.

• Thinner beam shape is favored

• Horizontal-vertical coupling is important (if we do not apply proper cou-555

pling, efficiency decrease down to factor 2).

3βN,T is twiss parameter introduced in Section 3.1.
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∆p/p βN,T coupling good/tot ratio acceptable or not

0 10 yes 340/400 85% ©
no 247/400 △

20 yes 368/400 92% ©
no 246/400 △

≤ 0.5% 10 yes 52/400 ×
no 55/400 ×

20 yes 52/400 ×
no 52/400 ×

≤ 0.1% 10 yes 233/400 △
no 170/400 ×

20 yes 243/400 △
no 199/400 △

≤ 0.05% 10 yes 304/400 76% ©
no 197/400 ×

20 yes 331/400 83% ©
no 236/400 △

Table 5: Comparison among two types initial twiss parameter β and with/without coupling.

Momentum dispersion of the muon beam ∆p/p ≤ 0.05% is acceptable. βN,T = 20 is better

than βN,T = 10 case. Without rotation matrix, injection efficiency decreases by factor two.
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6. Conclusion

We described a new conceptual design of three dimensional spiral injection

scheme, which is an unprecedented injection technology in the world. In order

to achieve 1 ppm level of field uniformity in the beam storage volume, we utilize560

3 T MRI-type solenoid magnet. Diameter of the storage ring is only 0.66 m

with 300 MeV/c muon beam. Conventional injection scheme is not applicable

to such a compact ring, but the newly developed scheme does work.

Starting from a single muon kinetics, we discussed an acceptance of beam

phase-space at the entrance point of the storage magnet as well as strong cou-565

pling between horizontal and vertical beam phase-space. We also described a

transfer matrix to create such a strong coupled beam. At the exit of the LINAC,

the beam is supposed to be no coupling. Therefore we need to apply appropri-

ate coupling to the muon beam at the beam transport line between the exit of

LINAC to the entrance of the storage magnet. Weak focusing magnetic field570

and the vertical kicker system are described. Field index of Weak focusing field

is determined to avoid coincidence with g − 2 frequency. But we still need for

further studies to find the best parameters of field strength and time structure

of the kicker.

Demonstrate a feasibility of the newly developed injection scheme is im-575

portant. Test experiment is now running. Utilizing 100 keV electron beam,

we try to inject the electron beam into the test solenoid magnet (100 Gauss).

We expect to have many feed backs which should be reflected on the detailed

engineering design from the test experiment.
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